

APPROVAL SHEET

MR12, MR10, MR08, MR06,

MR04 1%, 5%

厚膜通用片式电阻器尺寸 1206,1210,0805,0603,0402,汽车和军用

兼容

特征

- 1. 高可靠性和稳定性±1%
- 2. 耐硫化 ASTM B-809 60'C500 小时
- 3. 符合汽车 AEC Q-200 和军用 MIL-STD 标准
- 4. 100%CCD 检查
- 5. 符合 RoHS 2 标准的无卤素产品

应用程序

- 汽车应用
- 用户用电设备
- 计算机应用
- 电信应用

描述

电阻采用高档陶瓷体(氧化铝)构成。 内部金属电极被添加在每一端,并由电阻性糊状物连接,该糊状物被施加到衬底的顶表面上。 调整浆料的组成以给出所需的近似电阻,并通过激光切割该电阻层将该值修整到公差范围内。 电阻层覆盖有保护涂层。 最后,增加两个外部端接。 为了便于焊接,这些终端的外层采用锡(无铅)合金。

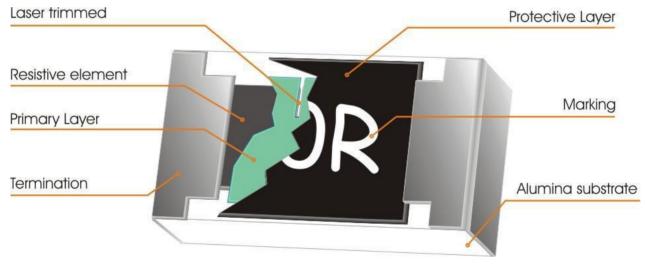


图 1。 芯片 R 的构建

快速参考数据

项目					总规	2范		,		
系列号。	MR ²	10	MR	12	MRO)8	MR	06	MR)4
大小代码	1210 (3	3225)	1206 (3216)		第 0805 次(2012 年) 06		0603 (0603 (1608)		005)
阻力范围		1 这是一个非常重要的问题~10 米这 是一个非常重要的问题(这是一个 非常重要的问题 5%公差),跳线 1 这是一个非常重要的问题 ~10 米这是一个非常重要的 问题(这是一个非常重要 的问题 1%公差)								
阻力容差	这是一个 非常重要 的问题 1% E96/E24	这一非重的 题 5% E24	这是一个非 常重要的问 题 1% E96/E24		这是一个非 常重要的问 题 1% E96/E24		这是一个非 常重要的问 题 1% E96/E24		这是一个非 常重要的问 题 1% E96/E24	这一非重的题 5% E24
TCR (ppm/这是 一个非常重要的问题 C) R>1m 这是一个非 常重要的问题 10 这是一个非常 重要的问题 <r< td=""><td>这是一个[;] 问题</td><td colspan="2"></td><td colspan="2">这是一个非常重要的问 这 题 200</td><td colspan="2">题 200</td><td>这是一个非问题:</td><td>常重要的 200</td></r<>	这是一个 [;] 问题			这是一个非常重要的问 这 题 200		题 200		这是一个非问题:	常重要的 200	
≤1M 这是一个非常重要的问题 r≤10 这是一个非常重要的问题	这是一个 [‡] 问题 -200~	100	这是一个非常重要 的问题 100 -200~+400		这是一个非常重要的问题 100 -200~+400		题 100		问题 100 -200~+400	
麦克斯。 耗散 @TAMB=70 这是 一个非常重要的 问题 c	1/2	瓦	1/4 瓦		1/4 瓦		1/8 瓦		1/10 瓦	
麦克斯。 操作 电压(直流或 均方根)	200V		200V		150V		75V		50V	
麦克斯。 过载 电压(直流或 均方根)	400V 400V)V	300V 150V		V	100V			
气候性 类别 (IEC 60068)					55/15	5/56				

注意:

- 1. 这是可连续提供给电阻元件的最大电压,参见"IEC 出版物 60115-8"
- 2. 麦克斯。 工作电压:所谓 RCWV (额定连续工作电压) 由下式确定

RCWV = √额定功率电阻 价值 或者麦克斯。 以上列出的 RCWV,以较低者为准。

3. 跳线电阻定义为<0.05

尺寸(单位:mm)

I	3.10 这是一个	3.10 这是一个	2.00 这是一个	1.60 这是一个	1.00 这是一个
	非常重要的问	非常重要的问	非常重要的问	非常重要的问	非常重要的问
	题 0.10	题 0.10	题 0.10	题 0.10	题 0.05
w	2.60 这是一个	1.60 这是一个	1.25 这是一个	0.80 这是一个	0.50 这是一个
	非常重要的问	非常重要的问	非常重要的问	非常重要的问	非常重要的问
	题 0.10	题 0.10	题 0.10	题 0.10	题 0.05
Т	0.55 这是一个	0.60 这是一个	0.50 这是一个	0.45 这是一个	0.35 这是一个
	非常重要的问	非常重要的问	非常重要的问	非常重要的问	非常重要的问
	题 0.10	题 0.15	题 0.15	题 0.15	题 0.05
结核	0.50 这是一个	0.45 这是一个	0.40 这是一个	0.30 这是一个	0.25 这是一个
	非常重要的问	非常重要的问	非常重要的问	非常重要的问	非常重要的问
	题 0.20	题 0.20	题 0.20	题 0.15	题 0.10
тт	0.50 这是一个	0.50 这是一个	0.40 这是一个	0.30 这是一个	0.20 这是一个
	非常重要的问	非常重要的问	非常重要的问	非常重要的问	非常重要的问
	题 0.20	题 0.20	题 0.20	题 0.10	题 0.10

标记

	这是一个非常重要的				
代码位数的大小\nr\公差	问题 5%	这是一个非常重要的问题 1%			
1210/1206/0805	3位标记	4 位标记			
0603 (1608)	3位标记	3 位标记			
0402 (1005)	NO 标记				

(这是一个非常重要的问题 5%:1206, 1210, 0805 和 0603)

每个电阻器的保护涂层上都标有三位数字代码,以指定标称电阻值。

3 位标记(这是一个非常重要的问题 1%:0603)

标称电图	I.				描述										
1.E-24 🤅	系列				为 <i>0603 WR06X</i> 这是 个非常重要的问题										
2.E-96 3	系列			值:	第 1 个两位数为表上代码,第 3 个为电阻指标 值: y=10 ⁻² ,x=10 ⁻¹ ,A=10 ⁰ ,B=10 ¹ ,C=10 ² ,D=10 ³ ,E=10 ⁴ ,F=10 ⁵										
						例如:	1	7.8 欧姆	‡=25x → 17	78 欧姆= 1K7	25A, 8=25b				
2 4 11						00 T TU			178K=25[) 1M7	8=25E				
3.备注	.	代码					的物品没有		ь	代码	ь	代码		代码	n
代码	R_value		R_value	代码	R_value	代码	R_value	代码	R_value		R_value		R_value		R_value
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	215	45	287	57	383	69	511	81	681	93	909
10	124	22	165	34	221	46	294	58	392	70	523	82	698	94	931
11	127	23	169	35	226	47	301	59	402	71	536	83	715	95	953
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

4 位标记(这是一个非常重要的问题 1%:1210/1206/0805)

每个电阻器在保护涂层上用四位数字代码标记,以表示标称电阻器

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
3-digits marking (1210, 1206, 0805, 0603 ±5%)	100	120	101	682	473
4-digits marking	10R0	12R0	1000	6801	4702

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$, and E24+E96 series for resistors with a tolerance of $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2.1

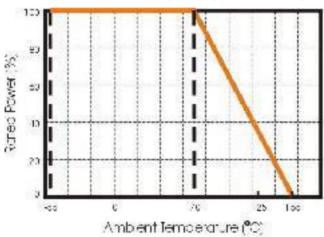


Figure 2.1 Maximum dissipation in percentage of rated power as a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

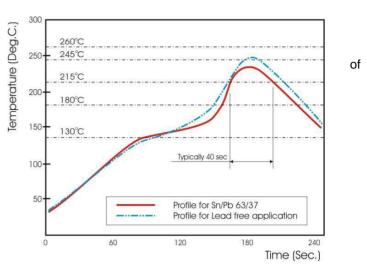


Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

MR12	х	472_	J	Т	L
Automotive code MR10: 1210 MR12: 1206 MR08: 0805 MR06: 0603 MR04: 0402	Type code X: Jumper $\pm 5\%$, $1\Omega \sim 10M\Omega$ $\pm 1\%$, $10\Omega \sim 1M\Omega$ W: $\pm 1\%$, $< 10\Omega$; $> 1M\Omega$	Resistance code $\pm 5\%$, E24: 2 significant digits followed by no. of zeros and a blank $220\Omega = 221_$ $4K7 = 472_$ $10\Omega = 100_$ $1\Omega = 1R0_$ ("_" means a blank) Resistance code $\pm 1\%$, E24+E96: 3 significant digits followed by no. of zeros $E96: 37.4K\Omega = 3742$ $E24: 220\Omega = 2200$ $4K7 = 4701$ $10\Omega = 10R0$ $1\Omega = 1R00$	Tolerance F:±1% J:±5% P:Jumper	Packaging code T: 7" Reeled taping D: 7" Reel 20K/RL 0402 size Q: 10" Reeled taping G: 13" Reeled taping B: Bulk	Termination code L = Sn base (lead free)

^{*} Anti-Sulfuration test conditions: ASTM B-809-95 60'C 500hrs, criteria: +/-1%!

MR10, MR12, MR08, MR06:

1. Reeled tape packaging: 8mm width paper taping 5000pcs per 7" reel, 10kpcs per 10" reel, 20kpcs per 13" reel.

2. Bulk packaging : 5000pcs per poly-bag

MR04:

1. Reeled tape packaging: 8mm width paper taping 10,000pcs per reel,

2. Bulk packaging : 10,000pcs per poly-bag

TEST AND REQUIREMENTS

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, sub-clause 5.3. Unless otherwise specified, the following value supplied:

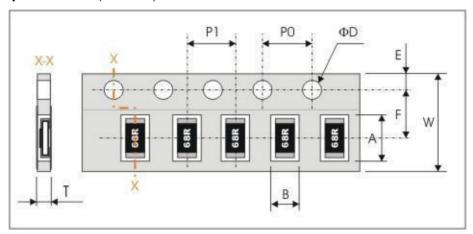
Temperature: 15°C to 35°C.

Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

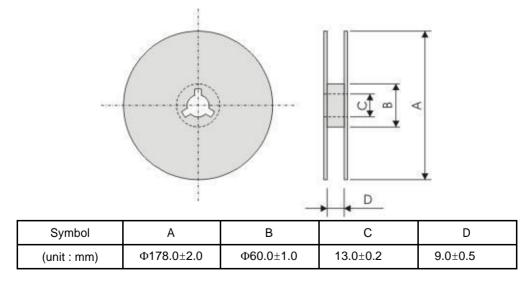
TEST	PROCEDURE / TEST METUOR	REQUIREMENTS	
1531	PROCEDURE / TEST METHOD	Resistance	0Ω
Electrical Characteristics	- DC resistance values measurement	Within the specified tolerance	
	- Temperature Coefficient of Resistance (T.C.R)	Refer to "QUICK REFERENC	E DATA"
JISC5201-1: 1998	Natural resistance change per change in degree centigrade.		
Clause 4.8	$\frac{R_{3} - R_{1}}{R(t_{2} - t_{1})} \times 10^{-6} \text{ (ppm/°C)} t_{1} : 20^{\circ}\text{C} + 5^{\circ}\text{C} - 1^{\circ}\text{C}$		
	R ₁ : Resistance at reference temperature		
	R ₂ : Resistance at test temperature		
Resistance to soldering	Un-mounted chips completely immersed for 10±1second in a	Δ R/R max. \pm (0.5%+0.05 Ω)	
heat (R.S.H)	SAC solder bath at 270°C±5°C	No visible damage	<50mΩ
MIL-STD-202 method 210			10011122
Solderability J-STD-002	take the sample for 155°C dwell time 4hrs/ solder dipping 235°C/ 5sec. 95% coverage min., good tinn		
J-51D-002	b) Steam the sample dwell time 1 hour/ solder dipping 260°C/7sec.	no visible damage	
Temperature cycling	1000 cycles, -55°C ~ +155°C, dwell time 5~10min	Δ R/R max. ±(0.5%+0.05 Ω)	
JESD22		No visible damage	<50mΩ
method JA-104		·	
Moisture Resistance	65±2°C, 80~100% RH, 10 cycles, 24 hours/ cycle	Δ R/R max. \pm (0.5%+0.05 Ω)	
MIL-STD-202		No visible damage	<50mΩ
method 106			
Bias Humidity	1000+48/-0 hours; 85°C, 85% RH, 10% of operation power	LD/D (40/ 0.050)	50 0
MIL-STD-202		Δ R/R max. \pm (1%+0.05 Ω) No visible damage	<50mΩ
method 103			
Operational Life	1000+48/-0 hours; 35% of operation power, 125±2°C	ΔR/R max. ±(1%+0.05Ω)	50.0
MIL-STD-202 method		No visible damage	<50mΩ
108		12 112.2.0 00030	

TEST	PROCEDURE / TEST METHOD	REQUIREMENTS		
TEST	PROCEDURE/TEST METHOD	Resistance ±5%, ±1%	0Ω	
High Temperature	1000+48/-0 hours; without load in a temperature chamber	Δ R/R max. \pm (1%+0.05 Ω)		
Exposure	controlled 155±3°C	No visible damage		
MIL-STD-202			<50mΩ	
method 108				
Mechanical Shock	1/2 Sine Pulse / 1500g Peak / Velocity 15.4ft/sec	Within the specified		
MIL-STD-202		tolerance	$<$ 50m Ω	
method 213		No visible damage		
Board Flex	Resistors mounted on a 90mm glass epoxy resin PCB(FR4),	Δ R/R max. ±(1.0%+0.05Ω).		
AEC-Q200-005	bending once 2mm for 10sec	No visible damage		
Terminal strength	Pressurizing force: 1Kg, Test time: 60±1sec.	No remarkable damage or removal of		
AEC-Q200-006		the		
		terminations		
Vibration	Test 5g's for 20min., 12 cycles each of 3 orientations	Δ R/R max. ±(1.0%+0.05Ω)		
MIL-STD-202		No visible damage	< 50 m Ω	
method 204				
Thermal shock	Test –55 to 155℃/ dwell time 15min/ Max transfer time 20sec	ΔR/R max. ±(0.5%+0.05Ω)		
MIL-STD-202 300cycles		No visible damage	<50mΩ	
method 107				
ESD	Test contact 1.0KV (0.5KV for 0402 only)	Δ R/R max. \pm (1%+0.05 Ω)	50	
AEC-Q200-002		No visible damage	<50mΩ	


TEST CONDITION FOR JUMPER (0 $\Omega)$

Item	MR10	MR12	MR08	MR06	MR04			
Power Rating At 70°C	1/2W	1/4W	1/4W	1/8W	1/10W			
Resistance		MAX.50mΩ						
Rated Current	3A	2A	2A	1.5A	1A			
Peak Current	7.5A 5A 5A 3.5A 3A							
Operating Temperature	-55 ~ +155°C							

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	Е
MR10	3.60±0.20	3.00±0.20			
MR12	3.60±0.20	2.00±0.20			
MR08	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10
MR06	1.90±0.20	1.10±0.20			
MR04	1.20±0.10	0.70±0.10			

Series No.	P1	P0	ΦD	Т
MR10/12/08	4.00±0.10			Max. 1.0
MR06	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	0.65±0.05
MR04	2.00±0.10			0.40±0.05

7" Reel dimensions

